Gain-of-Function Mutations in the KATP Channel (KCNJ11) Impair Coordinated Hand-Eye Tracking

نویسندگان

  • James S. McTaggart
  • Ned Jenkinson
  • John-Stuart Brittain
  • Siri A. W. Greeley
  • Andrew T. Hattersley
  • Frances M. Ashcroft
چکیده

BACKGROUND Gain-of-function mutations in the ATP-sensitive potassium channel can cause permanent neonatal diabetes mellitus (PNDM) or neonatal diabetes accompanied by a constellation of neurological symptoms (iDEND syndrome). Studies of a mouse model of iDEND syndrome revealed that cerebellar Purkinje cell electrical activity was impaired and that the mice exhibited poor motor coordination. In this study, we probed the hand-eye coordination of PNDM and iDEND patients using visual tracking tasks to see if poor motor coordination is also a feature of the human disease. METHODS Control participants (n = 14), patients with iDEND syndrome (n = 6 or 7), and patients with PNDM (n = 7) completed three computer-based tasks in which a moving target was tracked with a joystick-controlled cursor. Patients with PNDM and iDEND were being treated with sulphonylurea drugs at the time of testing. RESULTS No differences were seen between PNDM patients and controls. Patients with iDEND syndrome were significantly less accurate than controls in two of the three tasks. The greatest differences were seen when iDEND patients tracked blanked targets, i.e. when predictive tracking was required. In this task, iDEND patients incurred more discrepancy errors (p = 0.009) and more velocity errors (p= 0.009) than controls. CONCLUSIONS These results identify impaired hand-eye coordination as a new clinical feature of iDEND. The aetiology of this feature is likely to involve cerebellar dysfunction. The data further suggest that sulphonylurea doses that control the diabetes of these patients may be insufficient to fully correct their neurological symptoms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pharmacological rescue of trafficking-impaired ATP-sensitive potassium channels

ATP-sensitive potassium (KATP) channels link cell metabolism to membrane excitability and are involved in a wide range of physiological processes including hormone secretion, control of vascular tone, and protection of cardiac and neuronal cells against ischemic injuries. In pancreatic β-cells, KATP channels play a key role in glucose-stimulated insulin secretion, and gain or loss of channel fu...

متن کامل

KATP Channel Mutations and Neonatal Diabetes

Since the discovery of the KATP channel in 1983, numerous studies have revealed its physiological functions. The KATP channel is expressed in various organs, including the pancreas, brain and skeletal muscles. It functions as a "metabolic sensor" that converts the metabolic status to electrical activity. In pancreatic beta-cells, the KATP channel regulates the secretion of insulin by sensing a ...

متن کامل

Clinical and Molecular Genetic Analysis of Iranian Patients with Neonatal Diabetes demonstrating Mutations in KCNJ11 gene

Abstract We screened the KCNJ11 gene from 35 individuals clinically diagnosed with type 1 diabetes mellitus under the age of 6 months in 3 years duration. Six different heterozygous missense mutations were found in 7 of the 35 probands, which accounted for 20% of all individuals. A novel mutation W68R (No Locus, GU170814; 2009) was identified in the kir6.2, the pore-forming subunit of the KATP ...

متن کامل

Successful sulfonylurea treatment in a patient with permanent neonatal diabetes mellitus with a novel KCNJ11 mutation

Permanent neonatal diabetes mellitus refers to diabetes that occurs before the age of 6 months and persists through life. It is a rare disorder affecting one in 0.2-0.5 million live births. Mutations in the gene KCNJ11, encoding the subunit Kir6.2, and ABCC8, encoding SUR1 of the ATP-sensitive potassium (KATP) channel, are the most common causes of permanent neonatal diabetes mellitus. Sulfonyl...

متن کامل

DEND Syndrome with Heterozygous KCNJ11 Mutation Successfully Treated with Sulfonylurea

Permanent neonatal diabetes mellitus (PNDM) is caused by mutations in the ATP-sensitive potassium channel (KATP channel) subunits. Developmental delay, epilepsy, and neonatal diabetes (DEND) syndrome is the most severe form of PNDM and is characterized by various neurologic features. We report on a patient with DEND syndrome following initial misdiagnosis with type 1 DM, who was successfully sw...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013